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Abstract
Incorporating high-entropy alloys (HEAs) in composite microlattice structures yields superior
mechanical performance and desirable functional properties compared to conventional metallic
lattices. However, the modulus mismatch and relatively poor adhesion between the soft polymer
core and stiff metallic film coating often results in film delamination and brittle strut fracture at
relatively low strain levels (typically below 10%). In this work, we demonstrate that optimizing
the HEA film thickness of a CoCrNiFe-coated microlattice completely suppresses delamination,
significantly delays the onset of strut fracture (∼100% increase in compressive strain),
and increases the specific strength by up to 50%. This work presents an efficient strategy to
improve the properties of metal-composite mechanical metamaterials for structural applications.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Mechanical metamaterials such as metallic microlattices have
attracted increasing interest in the recent years owing to
its excellent mechanical properties, such as high stiffness
and strength at low densities [1–7]. Among the various
strategies implemented [8–17], metal/alloy composite micro-
lattices present a straightforward and effective method to elev-
ate the stiffness and strength at even lower weight [18–21].
Furthermore, high-entropy alloys (HEAs), consisting of four
or five primary constituent metal elements, have recently
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been implemented in composite micro- and nanolattices to
exhibit superior specific strength and tunable properties com-
pared to conventional metals/alloys [22–24]. Despite their
high strength [22], these HEA microlattices still experi-
ence brittle strut fracture at low compressive strains (∼7%).
The majority of composite microlattices reported thus far
exhibit this phenomenon, which is primarily caused by weak
cores or film delamination [12, 18–20]. Hence, in this work,
we employed projection micro-stereolithography (PµSL) and
magnetron sputtering to fabricate CoCrNiFe-coated compos-
ite microlattice. Due to its liquid crystal on silicon spatial
light modulator and multi-projection stitching process, PµSL
offers a large, high-resolution build area, enabling the fab-
rication of centimeter-scale samples with micro-scale resol-
ution [10, 25, 26]. We show that optimizing the film thickness
completely suppresses delamination and drastically delays the
onset of strut fracture. Ultimately, we managed to fabricate
composite microlattices that exhibit higher specific strength
and compressive strain compared to previous works.

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT
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Figure 1. HEA composite lattice design and microfabrication process. (a) Representative unit cell of the HEA-coated octet lattice
fabricated. (b), (c) Schematic illustration of the PµSL printing technology (b) to fabricate the polymer lattices and DC magnetron sputtering
(c) used to deposit a thin HEA coating on the polymer lattice to obtain the composite lattices.
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Figure 2. Microstructural analysis of CoCrNiFe HEA film. (a) XRD, (b) TEM, and corresponding (c) SADP analysis of the HEA film,
confirming its FCC structure.

2. Material and methods

An octet lattice (figure 1(a)) was designed and optimized
using a CAD software (SolidWorks™). Polymer microlattices
were fabricated via PµSL (BMF™ Technologies) using 1,6-
hexanediol diacrylate (HDDA) resin (figure 1(b)). The octet
geometry demonstrates stretching-dominated behavior, allow-
ing it to withstand larger loads than bending-dominated lat-
tices at similar relative densities [27, 28]. The octet lattice had
a unit cell size of 2 mm and a strut diameter of 0.2 mm. Sub-
sequently, a thin layer of CoCrNiFe HEA film was deposited
onto the polymer scaffold via magnetron sputtering at room
temperature (figure 1(c)). High purity (⩾99.99%) CoCrNiFe
alloy targets were used, and the chamber was evacuated below
4.0× 10−4 Pa. The total argon flow rate was fixed at 12 sccm,
and the rotation speed was 10 r min−1 to homogenize the
alloy composition and film thickness. The sputtering power
was 200W. The substrates were neither cooled nor heated dur-
ing deposition. The thickness of HEA films was adjusted by
the sputtering time, while all other parameters were kept con-
stant. Gatan™Microtest 200 was used to perform the uniaxial
compression experiments at a strain rate of 10−3 s−1.

For characterizations, FEI™ Quanta 450 FEG scan-
ning electron microscope (SEM), JEOL™ JEM-2100 F
transmission electron microscope (TEM), and Rigaku™

SmartLab x-ray diffraction (XRD) with a scanning range from
30◦ to 60◦ were used to capture the post-compression micro-
lattice morphologies and microstructures of CoCrNiFe HEA
thin films, respectively. The HEA film was deposited on a
Si wafer during the deposition of the microlattice [24]. The
coated Si wafer was used in the characterizations described
above. The TEM sample was prepared via manual milling fol-
lowed by ion-milling at liquid nitrogen temperature to min-
imize potential ion damages. A cross-sectional view of HEA
film with a single-tilt holder was observed using TEM at an
acceleration voltage of 200 kV.

3. Results and discussion

Figure 2 shows the microstructural characterization of the
CoCrNiFe film. The XRD results, presented in figure 2(a),
show a broad diffraction peak at about 2θ = 44.1◦, indicat-
ing the (111) lattice planes of a face-centered cubic (FCC)
structure. The broad peak is associated with the nano-scale
grain size and distortion in the crystal lattice, caused by the
random distribution of atoms of different sizes on the lat-
tice sites. The TEM image, shown in figure 2(b), displays
a nanocrystal feature. The selected area diffraction pattern
(SADP) in figure 2(c), acquired from the area in figure 2(b),
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Figure 3. In situ uniaxial compression of polymer and composite microlattices. (a) Deformation behavior of the microlattices up to the
strain at which strut fracture starts to occur. (b) Representative stress–strain curves of the polymer and composite microlattices coated with
100 nm and 400 nm of HEA film.
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Figure 4. Mechanical analysis of the polymer and composite lattices. (a) Comparison of the specific Young’s modulus and strength of the
HEA-coated lattices and pure polymer. (b) Schematic illustration of the core–shell pillar under uniaxial compression used in the buckling
model. (c) Plot for the buckling wavelength parameter against the radius to thickness ratio for different ratios of Young’s modulus. The
values for the two CoCrNiFe thicknesses used are indicated on the plot [29].

shows (111), (200) and (220) peaks, further verifying the FCC
structure.

Figure 3 shows the in situ uniaxial compression exper-
iments performed on the polymer and composite microlat-
tices. Figures 3(a) and (b) show the deformation process
of the microlattices during compression and the correspond-
ing stress–strain curves, respectively. All of the microlattices
in figure 3(a) show elastic strut buckling at low compress-
ive strains. However, the microlattice with a thicker coat-
ing (i.e. 400 nm) exhibited localized strut fracture before the
pristine polymer (i.e. 0 nm) and composite microlattice, which
had a thinner coating (i.e. 100 nm). The thinly coated micro-
lattice displayed strut fracture at a significantly higher com-
pressive strain (∼17%) compared to that of the composite
microlattice with a thick coating (∼8.5%). The thinly coated
microlattice performed is similarly to the pure polymer micro-
lattice (∼18%). This observation agrees with the correspond-
ing stress–strain curves shown in figure 3(b). Although the
microlattice with a thinner coating possess a slightly lower
modulus, its peak stress was about 50% higher than the

microlattice with a thick coating. The increased peak stress
is due to the enhanced compressive strain at which strut frac-
ture initiates. As shown in figure 4(a), the thinly coated micro-
lattice possessed the highest specific modulus and strength
compared to the polymer and composite microlattice with
the thicker coating. The obtained values were higher than
previously reported microlattices, such as NiP [3] and SiN-
coated [4] microlattices. For the calculation of specific mod-
ulus and strength, the density of the composite microlattices
were approximated using the following equation:

ρcomposite =
ρHEAVHEA + ρpolyVpoly

VHEA + Vpoly

where ρMEA and ρpoly are the estimated densities of the
CoCrNiFe HEA film andHDDA photoresist, respectively. The
density of the filmwas determined through the rule of mixtures
and the respective densities of each element. VMEA and Vpoly

are the volumes of the CoCrNiTi0.1 film and polymer core,
respectively.
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Figure 5. Post-compression SEM images of the composite microlattices with different film thicknesses (100 nm and 400 nm). (a), (b) The
post-compression SEM image of an octet unit cell, (c), (d) outer fracture surface morphology, and (e), (f) cross-sectional morphology for the
lattices coated with 100 nm and 400 nm of CoCrNiFe HEA, respectively.

To elucidate the delayed strut fracture in the thin-coated
(i.e. 100 nm) composite microlattice, the dominant deform-
ation behavior was determined using a simple buckling model
where the composite configuration was approximated by a cyl-
indrical shell (i.e. HEA film) with an elastic core (i.e. polymer)
[29]. The loading conditions for the compression of core–shell
pillars was used to mimic the stretching-dominated behavior
of the octet lattice geometry [27, 30]. The critical buckling
stress, σcr, for the composite pillars under uniaxial compres-
sion was calculated by modifying the results for the buck-
ling of a hollow cylinder (equation (1)) [31] to account for an
elastic, complaint core as a two-dimensional (2D) foundation
supporting a longitudinal strip, mn (figure 4(b)), of the shell.

σo =
Et

r
√
3(1− v2)

. (1)

In equation (1), σo represents the critical buckling stress of a
hollow cylinder with radius, r, and film or wall thickness, t.
Equation (2) gives the sinusoidal radial displacement, w, dur-
ing composite strip buckling:

w = wm sin
(mπx

l

)
. (2)

In this case, l/m represents the half-buckled wavelength, l ′,
and wm is the maximum radial displacement. The compliant
polymer core is treated as a half elastic space with a spring
constant of kpoly , as expressed in equation (3) [32, 33]:

kpoly =
2Epoly(

3 − vpoly
)
(1 + vpoly)

1
λ

(3)

where the buckling wavelength parameter λ= l/mπ = l ′/π .
Consequently, the axial load (Naxial) in the buckled composite
strip can be represented as equation (4):

Naxial = D
1
λ2

+
EHEA t
r2

λ2 +
2EHEAαλ(

3 − vpoly
)(

1 + vpoly
) (4)

where D= Et3/12
(
1− v2

)
and α = Epoly/EHEA . Epoly and EHEA

are the elastic modulus of the core (∼3 GPa) and HEA film
(∼216 GPa). vHEA and vpoly are the Poisson’s ratio of the HEA
film and core, which were taken as 0.3 and 0.4, respect-
ively [34]. The minimum or critical buckling load can then
be calculated by setting the derivative of Naxial with respect to
λ equal to zero. In our case, (r/t)

(
Epoly/EHEA

)
> 10. Thus the

critical wavelength parameter, λcr, can be calculated by the
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result for the wrinkling of a flat sheet (i.e. HEA film) on an
elastic core (i.e. polymer), shown in the following (equation
(5)) [33]:

λcr

t
=

[
(3 − vpoly)(1 + vpoly)

12(1 − vHEA2)

]1/3[EHEA

Epoly

] 1
3

. (5)

For the 2D composite strip, σcrit = Naxial/t, and as
D= Et3/12

(
1− v2

)
, thus, the critical buckling stress in the

shell can be expressed by the following (equation (6)):

σcr = σo f
√
3(1 − v2) (6)

where f is given by:

f =
1

12
(
1 − v2HEA

) (r/t)

(λcr/t)
2 +

(λcr/t)
2

(r/t)

+
3

(3 − vpoly)(1 + vpoly)

Epoly

EHEA

(
λcr

t

)( r
t

)
. (7)

Alternately, by combining equations (1) and (6), the critical
buckling stress, σcr, could be written as:

σcr =
EHEAt
r

f. (8)

The calculated buckling wavelength parameter to thickness
ratios, λcr/t, are plotted in figure 4(c) (adapted from Karam
and Gibson) [29]. Our composite microlattices lie well outside
of the solid black line, indicating that the microlattices pos-
sess a core that is strong enough to support the HEA film and
result in a synergistic enhancement in load bearing capability.
This explains the buckling and gradual localized strut fracture
observed in the deformation of our composite microlattice as
opposed to the catastrophic brittle failure, represented by an
extreme drop in stress levels, that results from insufficient core
strength [2, 8].

The improved strength and ductility of the thin-coated
composite microlattice is mainly attributed to the brittle-to-
ductile transition of the HEA film caused by the size reduc-
tion. Figure 5 shows the SEM images of deformed composite
microlattices after compression. The microlattice with 100 nm
coating retained its smooth surface morphology without any
apparent cracks even after deformation. No delamination was
observed after closer inspection of a fractured strut, which
indicates a good adhesion of the film to the polymer core.
Furthermore, the rough and serrated cross-sectional morpho-
logy of the fractured polymer core implies that the com-
posite microlattice has an elasto-plastic deformation beha-
vior and experiences significant plastic deformation prior to
fracture. Conversely, the microlattice with 400 nm coating
had multiple cracks on its strut surfaces after compression.
The cross-sectional morphology of the fractured strut indic-
ates some delamination and brittle fracture surface, implying
that it undergoes little to no plastic deformation. In a core–
shell configuration, the metallic film is the dominant load-
bearing component. Thus, strut fracture initiates from the film

as opposed to the polymer core (i.e. cracks start from outer sur-
face). Once the film cracks, the polymer core cannot withstand
the load by itself, causing the strut to fracture. Therefore, as
the fracture expands from the HEA film to the polymer core,
it travels in the direction of the slip planes of the HEA film
as opposed to the build direction of the polymer. Overall, the
post-mortemmorphologies of the fractured lattices explain the
largely delayed onset of fracture in the compositemicrolattices
with thinner film (100 nm), which results in higher peak stress
at lower densities.

4. Conclusion

In this work, we designed and fabricated CoCrNiFe HEA-
composite microlattices via PµSL 3D printing and magnet-
ron sputtering coating. After investigating the mechanical
properties of octet microlattices coated with different film
thicknesses (100 nm and 400 nm) via in situ compression
experiments, we found that reducing the HEA film coat-
ing thickness significantly delayed strut fracture onset. This
increases the compressive strain at which a stress drop occurs
and the strength of a microlattice despite its lower density.
We attribute these results to the size-induced brittle-to-ductile
transition of the HEA films, as shown by absence of cracks,
delamination and obvious plastic deformation in the frac-
tured strut of the thin-coated composite microlattices. Our
strategymay apply to other advancedmetallic/alloy composite
microlattices designed for robust mechanical and functional
applications.
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